ストークスの定理

 S を表裏のある開いた面とし,閉じた交差しない曲線 C (単純閉曲線)で囲まれているとします. S に垂直な直線が S の一方の側にあれば正と考え, S の反対側にあれば負と考えます.いずれの面が正となるかは任意ですが,あらかじめ決めておく必要があります.仮に観察者が S の境界線上を歩きながら,その頭が正の法線方向を指していてその面を左に見ているなら C の方向または反時計周りを正と呼びます.そこで仮に A_1,\ A_2,\ A_3 が単一値で連続で, S を含む空間内のある領域において連続な一階偏微分を有するなら,以下を得ます.

\displaystyle \int_C[A_1dx + A_2dy + A_3dz] =\\\vspace{0.2in} \underset{S}{\iint}\left[ \left( \frac{\partial A_3}{\partial y} -\frac{\partial A_2}{\partial z} \right)\cos\alpha + \left( \frac{\partial A_1}{\partial z} -\frac{\partial A_3}{\partial x} \right)\cos\beta + \left( \frac{\partial A_2}{\partial x} -\frac{\partial A_1}{\partial y} \right)\cos\gamma \right]dS \cdots(38)

 ベクトルの形では \bold{A} = A_1\bold{i} + A_2\bold{j} + A_3\bold{k} および \bold{n} = \cos\alpha\bold{i} + \cos\beta\bold{j} + \cos\gamma\bold{k} これは以下のように簡潔に表現できます.

\displaystyle \int_C \bold{A}\cdot d\bold{r} = \underset{S}{\iint}(\nabla\times\bold{A})\cdot\bold{n}dS\cdots(39)

 つまりこの定理では, ストークスの定理 と呼びますが,単純閉曲線 C に渡るベクトル \bold{A} の接線要素の線積分は, C を境界とする任意の面 S に渡るベクトル A の回転の法線要素の面積分に等しいと言えます.特殊例として (39) において \nabla\times\bold{A} = 0 とした場合,その結果 (28) を得ることに注意が必要です.

線積分が経路独立であるための条件

  • 定理 6-1.
  •  \displaystyle \int_C [Pdx + Qdy] が領域 \cal R において与えられた任意の2点を結ぶ C から経路独立であるための必要十分条件は \cal R において

    \partial P/\partial y = \partial Q/\partial x\cdots (23)

    ここで \cal R における偏微分は連続と考えられます.

 条件 (23) はまた Pdx + Qdy が全微分であることの条件でもあります.すなわち, Pdx + Qdy = d\phi のような形をした関数 \phi(x, y) が存在することです.そのような場合,曲線 C の末端を (x_1, y_1) および (x_2, y_2) とすると,積分値は以下により得られます.

\displaystyle \int_{(x_1, y_1)}^{(x_2, y_2)}[Pdx + Qdy] = \int_{(x_1, y_1)}^{(x_2, y_2)} d\phi = \phi(x_2, y_2) - \phi(x_1, y_1) \cdots(24)

 特に,仮に (23) を満たし C が閉曲線であるなら以下により x_1 = x_2,\ y_1 = y_2 が得られます.

\displaystyle \oint_C [Pdx + Qdy] = 0\cdots(25)

 定理 6-1 の結果は空間における線積分にも応用できます.ゆえに以下が得られます.

  • 定理 6-2.
  •  \displaystyle \int_C [A_1dx + A_2dy + A_3dz] が領域 \cal R において与えられた任意の2点を結ぶ C から経路独立であるための必要十分条件は \cal R において

    \displaystyle \frac{\partial A_1}{\partial y} = \frac{\partial A_2}{\partial x},\ \frac{\partial A_3}{\partial x} = \frac{\partial A_1}{\partial z},\ \frac{\partial A_2}{\partial z} = \frac{\partial A_3}{\partial y} \cdots(26)

    ここで \cal R における偏微分は連続と考えられます.

 その結果はベクトルの観点から簡潔に表現できます.\bold{A} = A_1\bold{i} + A_2\bold{j} + A_3\bold{k} とすると,線積分は \displaystyle \int_C \bold{A}\cdot d\bold{r} と記述でき,条件 (26) は条件 \nabla \times \bold{A} = 0 と等価です.仮に \bold{A} が物体に作用する力場 \bold{F} を表すとすると,その結果は物体をある点から他の点に移動するのになされた仕事の記述と等価であり, \nabla \times \bold{A} = 0 の時にのみ2点を結ぶ経路独立です.そのような力場のことを 保存力場 と呼びます.

 条件 (26) (または条件 \nabla\times\bold{A}=0 と等価)は又 A_1dx + A_2dy + A_3dz (又は \bold{A}\cdot\bold{r} )が全微分であるという条件でもあります.例えば A_1dx + A_2dy + A_3dz =d\phi のような関数 \phi(x, y, z) が存在します.そのような場合では仮に曲線 C の末端を (x_1, y_1, z_1) および (x_2, y_2, z_2) とすると,線積分の値は以下により得られます.

\displaystyle \int_{(x_1, y_1, z_1)}^{(x_2, y_2, z_2)}\bold{A}\cdot\bold{r} = \int_{(x_1, y_1, z_1)}^{(x_2, y_2, z_2)}d\phi = \phi(x_2, y_2, z_2)- \phi(x_1, y_1, z_1)\cdots(27)

 特に C が閉曲線で \nabla\times\bold{A} = 0 とすると

\displaystyle \oint_C \bold{A}\cdot d\bold{r} = 0 \cdots(28)