Theorems on eigenvalues and eigenvectors

Pocket

Theorem 12. The eigenvalues of a Hermitian matrix [or symmetric real matrix] are real. The eigenvalues of a skew-Hermitian matrix [or skew-symmetric real matrix] are zero or pure imaginary. The eigenvalues of a unitary [or real orthogonal matrix] all have absolute value equal to 1.

Theorem 13. The eigenvectors belonging to different eigenvalues of a Hermitian matrix [or symmetric real matrix] are orthogonal.

Theorem 14. [Cayley-Hamilton] A matrix satisfies its own characteristic equation.

Theorem 15. [reduction of matrix to diagonal form] If a non-singular matrix A has distinct eigenvalues \lambda_1,\ \lambda_2,\ \cdots with corresponding eigenvectors written as columns in the matrix

\displaystyle B = \left( \begin{array}{cccc} b_{11} & b_{12} & b_{13} & \cdots \\ b_{21} & b_{22} & b_{23} & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{array} \right)

then

B^{-1}AB = \left( \begin{array}{cccc} \lambda_1 & 0 & 0 & \cdots \\ 0 & \lambda_2 & 0 & \cdots \\ 0 & 0 & \lambda_3 & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{array} \right)

i.e. B^{-1}AB, called the transform of A by B, is a diagonal matrix containing the eigenvalues of A in the main diagonal and zeros elsewhere. We say that A has been transformed or reduced to diagonal form.

Theorem 16. [Reduction of quadratic form to canonical form] Let A be a symmetric matrix, for example,

\displaystyle A = \left( \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right),\ a_{12} = a_{21},\ a_{13} = a_{11},\ a_{23} = a_{32}

Then if \displaystyle X = \left( \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right), we obtain the quadratic form

 X^TAX = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3

The cross product terms of this quadratic form can be removed by letting  X = BU where U is the column vector with elements u_1,\ u_2,\ u_3 and B is an orthogonal matrix which diagonalizes A. The new quadratic form in u_1,\ u_2,\ u_3 with no cross product terms is called the canonical form. A generalization can be made to Hermitian quadratic forms.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です