# How to define Kt/V, an indicator of the efficiency of dialysis, as scalar function of SQL Server? Pocket

In Japan, Shinzato’s fomula for calculating Kt/V, an indicator of efficiency of dialysis, is recommended by JSDT. Since integral equation is used to solve Shinzato’s method, you couldn’t solve algebraically. In K/DOQQI, it is usual to solve Kt/V with Daugirdas’ method. Shinzato has described that Daugirdas’ Kt/V is similar to Shinzato’s Kt/V. $\displaystyle \mathrm{Kt/V} = - LN( R - 0.08 \times t ) + \left[ 4 - \left( 3.5 \times R \right) \right] \times\frac{\mathrm{UF}}{\mathrm{W}}\\ = - LN \left( \frac{\mathrm{postBUN}}{\mathrm{preBUN}} - 0.008 \times t \right) + \left[ 4 - \left( 3.5 \times \frac{\mathrm{postBUN}}{\mathrm{preBUN}} \right) \right] \times \frac{\mathrm{preWeight} - \mathrm{postWeight}}{\mathrm{postWeight}} \cdots(1)$ $\displaystyle \mathrm{Gw} = \mathrm{G}\cdot\mathrm{Tw} = \mathrm{Kd}\int_{0}^{Td}C_1dt + \mathrm{Kd}\int_{0}^{Td}C_2dt + \mathrm{Kd}\int_{0}^{Td}C_3dt \cdots(2)$ $\displaystyle \mathrm{Ce} = \mathrm{Cs} Exp\left( - \frac{\mathrm{Kt}}{\mathrm{V}} \right) + \frac{\mathrm{G}}{\mathrm{K}}\left[ 1 - Exp\left( - \frac{\mathrm{Kt}}{\mathrm{V}} \right) \right] \cdots(3)$

Execute the procedure as following;

References: JSDT 29 (12): 1511-1516, 1996

Second Generation Logarithmic Estimates of Single-Pool Variable Volume

Pocket 